目录

LC 799. 香槟塔 (opens new window) (opens new window)

中等

# 问题描述

我们把玻璃杯摆成金字塔的形状,其中 第一层1 个玻璃杯, 第二层2 个,依次类推到第 100 层,每个玻璃杯 (250ml) 将盛有香槟。

从顶层的第一个玻璃杯开始倾倒一些香槟,当顶层的杯子满了,任何溢出的香槟都会立刻等流量的流向左右两侧的玻璃杯。当左右两边的杯子也满了,就会等流量的流向它们左右两边的杯子,依次类推。(当最底层的玻璃杯满了,香槟会流到地板上)

例如,在倾倒一杯香槟后,最顶层的玻璃杯满了。倾倒了两杯香槟后,第二层的两个玻璃杯各自盛放一半的香槟。在倒三杯香槟后,第二层的香槟满了 - 此时总共有三个满的玻璃杯。在倒第四杯后,第三层中间的玻璃杯盛放了一半的香槟,他两边的玻璃杯各自盛放了四分之一的香槟,如下图所示。

示例

现在当倾倒了非负整数杯香槟后,返回第 ij 个玻璃杯所盛放的香槟占玻璃杯容积的比例( ij 都从 0 开始)。

示例 1:

输入: poured(倾倒香槟总杯数) = 1, query_glass(杯子的位置数) = 1, query_row(行数) = 1
输出: 0.00000
解释: 我们在顶层(下标是(0,0))倒了一杯香槟后,没有溢出,因此所有在顶层以下的玻璃杯都是空的。

示例 2:

输入: poured(倾倒香槟总杯数) = 2, query_glass(杯子的位置数) = 1, query_row(行数) = 1
输出: 0.50000
解释: 我们在顶层(下标是(0,0)倒了两杯香槟后,有一杯量的香槟将从顶层溢出,位于(1,0)的玻璃杯和(1,1)的玻璃杯平分了这一杯香槟,所以每个玻璃杯有一半的香槟。

示例 3:

输入: poured = 100000009, query_row = 33, query_glass = 17
输出: 1.00000

提示:

  • 0 <=poured <= 109
  • 0 <= query_glass <= query_row< 100

# 模拟

假设第 ii 层第 jj 只杯子为 dp[i][j]dp[i][j],那么,当 dp[i][j]dp[i][j] 杯子装满之后,多出部分会平均会溢出到 dp[i+1][j]dp[i+1][j]dp[i+1][j+1]dp[i+1][j+1] 只杯子中。模拟倒香槟的过程,将 pouredpoured 杯香槟倒入 row=0row = 0 的杯子中,然后开始模拟倒酒过程,直到到达需要查询的行数。由于只模拟倒查询的行数,有可能当前查询的杯子溢出部分没有处理,所以最终返回结果若大于 11 则只需返回 11 即可。

  • 时间复杂度:O(n2)O(n^2)
  • 空间复杂度:O(C)O(C)
上次更新: 2023/01/31 19:48:05

本博客所有文章除特别声明外,均采用 CC BY-SA 4.0 协议 , 转载请注明出处!